Computational Micro-mechanical Model of Flexible Woven Fabric for Finite Element Impact Simulation

نویسندگان

  • Ala Tabiei
  • Ivelin Ivanov
چکیده

This work presents a computational material model of flexible woven fabric for finite element impact analysis and simulation. The model is implemented in the nonlinear dynamic explicit finite element code LSDYNA. The material model derivation utilizes the micro-mechanical approach and the homogenization technique usually used in composite material models. The model accounts for reorientation of the yarns and the fabric architecture. The behavior of the flexible fabric material is achieved by discounting the shear moduli of the material in free state, which allows the simulation of the trellis mechanism before packing the yarns. The material model is implemented into the LSDYNA code as a user defined material subroutine. The developed model and its implementation is validated using an experimental ballistic test on Kevlar woven fabric. The presented validation shows good agreement between the simulation utilizing the present material model and the experiment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A meso-scale unit-cell based material model for the single-ply flexible-fabric armor

A meso-scale unit-cell based material model for a prototypical plain-woven single-ply flexible armor is developed and implemented in a material user subroutine for use in commercial explicit finite element programs. The main intent of the model is to attain computational efficiency when calculating the mechanical response of the multi-ply fabric-based flexible armor material during its impact w...

متن کامل

Fabric Drape Prediction Using Artificial Neural Networks and Finite Element Method

In this paper the mechanical behavior of woven materials is investigated in order to study and predict their dynamic draping. This model can simulate fabric deformation, taking into account its physical and mechanical properties. Once the model is tested and validated, an artificial neural network designed to train fabric drape is coupled with the finite element model to predict the drape behav...

متن کامل

Yarn pulling out test and numerical solution of penetration into woven fabric target impregnated with shear thickening fluid using SiO2 /Polyethylene Glycol

In this paper, finite element model of woven fabric target has been investigated which is impacted by a cylindrical projectile. Fabrics are impregnated with Shear Thickening Fluid (STF). The effects of the (STF) have been considered as frictional effect. The STF has been made (Nano Silica and Polyethylene Glycol (PEG)) and then diluted by ethanol proportion of 3:1. Yarn pulling out test from in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002